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Modulated Noisy Biological Dynamics: 
Three Examples 

Dante  R. Chialvo 1 and A. Vania Apkarian 1 

Three examples of noisy biological dynamics modulated by a periodic signal 
are discussed, A minimal neuron model driven by stochastic noise and small 
periodic force show a firing statistic comparable with stochastic resonance as 
demonstrated in bistable systems. Similar results are obtained from responses to 
periodic vibrotactile stimulation on higher-order neuronal units of the 
somatosensory pathway. Finally, results from a bistable visual perception task 
exhibiting stochastic resonance are reported. 

KEY WORDS: Stochastic resonance; spike generation; mechanoreceptors; 
spinal cord; somatosensory cortex; visual perception. 

1. I N T R O D U C T I O N  

Appropria te  encoding of information is a major  task in the nervous system. 
Mechanisms by which sensory inputs are encoded and eventually decoded 
in the central nervous system have to take into account  the presence 
of considerable uncorrelated background  noise. This noise can be approx-  
imated by the ongoing spontaneous  neuronal  activity. The mean rate of the 
cellular spontaneous  activity varies between regions of the brain and with 
states of  arousal  or  wakefulness of the animal, yet to date, no concrete 
function is assigned to this activity. 

Recently, in an apparent ly  unrelated context, it has been noticed that  
the output  signal from a noisy bistable system can be modula ted  in time by 
applying a weak external periodic forcing.~l' 13) This phenomenon  is curious 
in that  an increase in the input  noise can result in an improvement  in the 
output  signal-to-noise ratio. Since the op t imum level of  noise at which 

Computational Neuroscience, Department of Neurosurgery, SUNY Health Science Center, 
Syracuse, New York 13210. 

375 

0022-4715/93/0100-0375507.00/0 �9 1993 Plenum Publishing Corporation 



376 Chialvo and Apkarian 

the output of the device becomes coherent with the periodic signal occurs 
when the two characteristic times, the Kramers time and the period of the 
signal, are of the same order of magnitude, the phenomenon is known as 
stochastic resonance. By considering neurons as stochastically driven two- 
state devices, recent results (4' m) suggest that in some sensory processes 
signal encoding might be related to stochastic resonance. In spite of the 
attractiveness of this theory, no numerical evidence has been collected 
from realistic mathematical models of neurons. The analysis of previously 
reported probability density functions of the interspike intervals obtained 
in vivo from auditory and visual sensory neurons seems to agree with the 
main theoretical arguments. However, there is need for specific experimental 
observations designed specifically to investigate if stochastic resonance 
occurs in excitable tissue. 

This paper discusses biological dynamics, at three organizational 
levels, in which noise-induced transitions and periodic modulation are 
involved. In Section 2 the dynamics of a minimal excitable model with 
stochastic and periodic forcing is introduced. In vivo experiments are 
reported in Section 3, where encoding of sensory periodic stimuli in 
different levels of the neuraxis is investigated. Section 4 describes a visual 
perception task performed on human volunteers, demonstrating some of 
the properties of stochastic resonance at the level of the integrated output 
of the conscious brain. Finally, Section 5 offers a biologically oriented 
discussion of potential areas in which stochastic resonance can help in 
understanding biological behavior. 

2. A S I M P L E  T I M E - D I S C R E T E  N E U R O N  M O D E L  

A generic excitable system must be described by at least two state 
variables: potential and recovery. The minimal time-discrete model 
equations we study are of the form 

Xn+l=f(xn, yn)=x]exp(yn--xn)+k+z, ,  

Yn+~ =g(Yn, xn)=ay~-bxn+c 
(1) 

Equation (1) is a 2-dimensional finite-difference equation, where subscripts 
stand for the iteration step, x is the state variable related to membrane 
potential, and y is the second state variable equivalent to a generalized 
recovery current, z n represents the external stimulation, and a, b, c are 
positive parameters (a, b < 1), where a determines the time constant of 
reactivation, b the rate of inactivation, and c the maximum amplitude of 
the generalized recovery current (in all the results presented here we use 
a=0.89 ,  b=0.6 ,  c=0.28,  k=0.01) .  Equation (1) describes the local 
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dynamics of a single excitable cell at one point in space. The dynamics of 
Eq. (1) is easily grasped by phase plane analysis. In this simple model it is 
possible to obtain the nullclines for x and y in closed form: 

x n +  i = xn  = ( a y  - y + c ) / b  

Y,~+ ~ = Yn = log(x - k) - 2 log(x) + x 
(2) 

Figure 1 is the graph of Eq. (2). The intersection of both nullclines 
indicates the singular point, which for the above parameter values is stable. 
The singular point determine the "quiescent" state of the neuron in the 
absence of external input. Increasing k in this model has the same effect of 
a constant bias current being applied to a neuron. For  k~0 .029  an 
unstable focus appears and at k~0 .03  a "limit cycle" coexists with an 
unstable point in the same way as described in other models as well as in 
in v i t r o  experiments. (17) 

The model's response to periodic pulsatile stimulation (i.e., z r 0 for 
one or more iteration steps, at n multiples of the period, z = 0 otherwise) 
was briefly examined to see its correspondence with the dynamics of 
periodically perturbed neurons. (:2~ As stimulus period is decreased (from 
one stimulus every 45 time steps to one every 10 steps; constant amplitude 
zn=0.03),  there is a monotonic increase in the n : m  ratio, where m is the 
number of action potentials elicited in each periodic cycle of n applied 
stimuli (Fig. 2). Examination of the parameter space (stimulus amplitude 
vs. stimulus period) revealed periodic responses (with isoperiodic regions 
having n : m  structure following Farey's series) for most parameter values; 
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Fig. 1. NulMines of Eq. (1) for the parameter values indicated in the text. 
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Fig. 2. Response to periodic pulsatile stimulation of the neuron model of Eq. (1). Forcing z n 
is set to 0.03 every p iterations (zero otherwise). Asterisks indicates stimuli. Locked periodic 
responses are labeled as ratios n : m ,  where m is the number of action potentials ("spikes") 
contained on a sequence of n stimuli. 
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Fig. 3. Interspike interval histogram of the neuron model of Eq. (1) with constant stochastic 
input (white noise, amplitude 0.12) and different levels of (subthreshold) sinusoidal modula- 
tion amplitude (period, 50 iteration steps). (A) No modulation; (B-D) modulation amplitude 
0.02, 0.03, and 0.04, respectively. 
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aperiodic responses are found in small regions. These results agree with 
those obtained in the squid axon. (12) 

When white noise was applied in Eq. (1), the interspike interval 
histogram (ISIH) of the output spike train had a Poisson distribution (see 
Fig. 3A). Keeping noise amplitude constant and adding a sinusoidal signal 
resulted in an exponentially decreasing multipeaked ISIH distribution, 
where the first peak was at the period of the sinusoidal stimulus and the 
other peaks were at multiples of the stimulus period. Increasing the 
amplitude of the sinusoidal signal increased the rate of the exponential 
envelope (see Figs. 3B-3D). These results are identical to the stochastic 
resonance properties reported for bistable systems. (1~ The first return map 
of the intervals in one of the above cases (Fig. 3B) is shown in Fig. 4. 
Notice that this map closely resembles the return maps reported by 
Siegel (2~ for visual cortical cells excited by a flashing bar within its 
receptive field. 

Resonance is also demonstrable by looking at the coherence of the 
output with the periodic signal for different levels of noise. This is presented 
in Fig. 5. In this case the input signal amplitude is fixed at a subthreshold 
value (i.e., unable to induce an action potential) and the ISIH is invest- 
igated for increasing noise. Of particular interest is the total number of 
spikes collected during a given fixed time in relation with those intervals 
equal to the forcing period, both as functions of noise amplitude. In 
Fig. 5 the total number of counts is plotted in the top panel; those counts 
with interspike intervals equal to the period of the signal are plotted in the 
middle panel; and the ratio total counts and counts equal to the forcing 
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Fig. 5. Coherence of the output with the periodic signal (period, 40 iteration steps; 
amplitude, 0.015) for increasing levels of noise. Total number of spikes is counted in successive 
runs of fixed length (105 iterations) for different levels of noise (plotted in top panel). Spikes 
with intervals equal to the period of the modulation are also counted as a measure of output 
coherence (middle panel). The ratio of the latter to the former is an estimation of the 
signal-to-noise ratio (bottom panel). 

period are plotted in the bottom panel. Notice that number of counts 
equals zero for zero noise, total counts rises monotonically, and number of 
counts of intervals equal to the signal period reaches a peak for a given 
noise variance. The location of this "resonant" peak is dependent on the 
signal period (other variables fixed), moving to the left for shorter signal 
periods. 

3. R E S P O N S E  P R O P E R T I E S  OF S O M A T O S E N S O R Y  N E U R O N S  

Mechanoreceptor response properties were studied more than 20 years 
ago. These studies showed that the ISIH of rapidly adapting type primary 
afferents exhibit multipeaked distributions with envelopes resembling 
exponential decay when a weak vibratory mechanical stimulus is applied to 
their receptive fields. (24) Thus, we investigated the dynamics of rapidly 
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adapting type neurons in the spinal cord dorsal horn and the primary 
somatosensory cortex of the cat. 

Cats were anesthetized with chloralose (80 mg/kg) and maintained by 
nembutal drip (5 mg/kg per hr). In some animals the primary somatosen- 
sory cortex was exposed following a craniectomy and the response proper- 
ties of units with contralateral hindlimb receptive fields and with rapidly 
adapting type responses were studied. In other animals the spinal cord 
dorsal horn of the lumbar enlargement was exposed through a laminectomy 
and units with ipsilateral receptive fields on the glabrous pads and with 
rapidly adapting type responses isolated and studied. Spinal cord and 
cortical single-unit activity was recorded using low-impedance tungsten 
electrodes (1-5 Mohm). Unit activity was amplified, filtered, both recorded 
on tape and simultaneously passed through a window discriminator, and 
the time intervals between spikes stored in a computer. The computer has 
an on-line display of the ISIH and the peristimulus histogram (for more 
details see ref. 21). The hindlimb of interest was glued to a stage and the 
receptive field of isolated units determined by stroking the skin with a 
brush. The most sensitive spot of the receptive field was stimulated with an 
electromagnetically driven stylet. This stimulator displaces the stylet (tip 
diameter 1 mm) by following the amplitude and frequency of a command 
voltage (linear response DC-150 Hz, amplitude range 0.001-1 ram). The 
stylet was placed in the receptive field to induce a constant indentation of 
the skin upon which was superimposed a sinusoidal modulation of various 
frequencies and amplitudes. 

For rapidly adapting type units, the statistic of the ISIH of spinal cord 
and somatosensory cortical units during vibratory stimulation of their 
receptive fields showed a multimodal distribution with peak amplitudes 
decaying exponentially. The rate of decay changed relative to the amplitude 
of the stimulation. One example, presented in Fig. 6, corresponds to 
responses recorded from a spinal cord unit during sinusoidal mechanical 
stimulation (period of stimulus, 190 msec) of the hindlimb receptive field. 
The ISIHs calculated for consecutive runs at two amplitudes of the 
vibratory stimuli are shown in Fig. 6 (top panels, 7 and 5 arbitrary 
amplitude units). The logarithm of the ISIH peaks (located at multiple 
integers of 190 msec) was plotted for both runs (see Fig. 6, bottom panel). 
It is seen that both data sets are well defined by a linear regression line 
(r=0.998 and 0.999) and that the slope, indicating the rate of decay, 
increased as the stimulus amplitude increased, just as expected if we are in 
the presenc e of stochastic resonance. 

In the somatosensory cortex the results were basically similar. An 
example corresponding to activity recorded from the cortex is presented in 
Fig. 7, where the ISIH and an exponential fitted to the integer multiples of 
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Fig. 6, Interspike interval histograms (top panels) for a neuron in the cat's spinal cord 
during vibrotactile periodic stimulation of two different amplitudes (7 and 5 arbitrary units). 
Bottom panel shows the exponential fit of the peak amplitudes in log scale for both cases. 

C~ 

4SO 

40~j 

35C 

300 

~oC 

15C 

lOC 

l [ , 

4 0 0 -  

0 0 .  0 " ~ �9 , . 0 . 5  1 . 0  

ISI (see) 

Fig. 7. Interspike interval histogram for a neuron in the cat's somatosensory cortex during 
vibrotactile periodic stimulation. Right panel shows the exponential fit of the peak amplitudes 
at integer multiples of the driving period. 
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the driving frequency are plotted. This particular case is shown because 
there is an additional peak at an interval smaller than the stimulation 
period. It was found that the presence of this peak depended on the 
frequency of stimulation, vanishing for values corresponding to the most 
sensitive frequency of the receptor. 

Unlike the auditory primary afferents, which can have spontaneous 
activity rates of up to 100 Hz, or proprioreceptors, vibrotactile afferents are 
silent in the absence of somatic stimulation. However, they do exhibit mul- 
tipeaked responses to small-amplitude sinusoidal stimuli. This implies that 
the receptor noise is subthreshold and, therefore, tactile primary afferents 
operate outside the range of stochastic resonance. On the other hand, 
psychophysical studies in humans show that touch perception threshold 
decreases when the skin surface temperature is increased. (2) One explana- 
tion for this phenomenon would be an increase in receptor noise with 
temperature, maybe even driving the system into stochastic resonance, 
which remains to be tested. The spinal cord and cortical units shown above 
also had no spontaneous activity. However, this is a reflection of the depth 
of anesthesia, since most central vibrotactile cells display spontaneous 
activity that can be modulated with states of arousal. 

The numerical results in the preceding section as well as the in vivo 

results indicate that neurons are able to exhibit some of the properties of 
noisy bistable systems. Does this then imply that these higher moment 
statistical properties of neurons are relevant in information processing in 
the central nervous system and thus significant for the behavior of the 
organism ? Mean rate or phase-locked responses of neurons have been the 
mainstay of most neurophysiologic studies. Most coding properties of 
sensory neurons and motor output commands are understood by the mean 
rate response of cells, where the background activity is either ignored 
or subtracted from the response, in the vertebrate brain. However, the 
ubiquity of noise in the brain is too expensive (in terms of energy demand) 
to be accepted as just an epiphenomenon. 

4. A D D I N G  NOISE A N D  PERIODIC M O D U L A T I O N  
TO H A K E N ' S  BISTABLE V I S U A L  PERCEPTION 

In stereoscopic vision, the transition from viewing the local elements 
of an image to perceiving the global picture requires time and exhibits 
hysteresis; for example, the perception of the Necker cube (25) or of Julesz 
figures.(9) Although these effects have been described repeatedly, (23) to date 
there has been no theoretical framework to allow the examination of 
such phenomena. Here we describe a one-dimensional mapping of visual 
perception which exhibits stochastic resonance. 
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Haken (6) briefly described a set of images exhibiting perceptual 
hysteresis. These images were a sequence of eight hand-drawn images 
which are meant to represent a smooth transition from a man's face to the 
body of a woman. Perceptual hysteresis is easily demonstrable using 
Haken's pictures. Looking at the pictures sequentially in one direction (i.e., 
starting in the "face") or in the other (i.e., starting with the "woman"), the 
visual perception switches at different points. However, if the experiment is 
repeated by the same volunteer several times, some "imperfections" in the 
original drawing are rapidly learned (as cues), and used by the subject to 
identify which order corresponds to the image presented. This results in 
cancellation of the initial detected perceptual hysteresis. To have a smooth 
transition from women to face, cues have to be removed from Haken's 
original pictures. 

The two extreme images (woman and face) of Haken's original 
drawings were digitized and reproduced by using in both cases ten con- 
tinuous lines (see Fig. 8A). Next an algorithm mapped intermediate vectors 

1 17 
(A) 

(B) 

Fig. 8. The images used for studying perceptual hysteresis. (A) The two extreme images 
(woman and face) of Haken's original drawings and the transformation for four elements in 
the pictures are indicated by arrows. (B) Using the transformation in (A), 17 intermediate 
images were generated. 
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for each line with the respective one in the other extreme. In this way 17 
pictures were created (Fig. 8B) that give a computerized linear transforma- 
tion between the extreme images. With this technique imperfections such as 
abrupt changes, which existed in the original set, were eliminated. 

Black and white images were presented sequentially on the computer 
screen and the subjects were first trained to rank the images from 1 (face 
in Fig. 8B) to 17 (woman in Fig. 8B). The rate of image presentation was 
constant in all trials: each image was on for 0.5 sec followed by a blank 
mask lasting 0.5 sec. The subjects were required to perform the ranking 
within this 1-sec period. After a brief training period, subjects were able to 
perform the task comfortably for periods in excess of 30 rain. 

After the subject familiarization with the images, the 17 images were 
presented in a random sequence with near uniform distribution. The sub- 
ject was asked to rank each image. The histogram for the distribution of 
the images presented is shown in the middle panel of Fig. 9 and the 
bimodal distribution of the ranking of the images is shown in the bottom 
panel. This histogram indicates that the subject ranked most images to the 
two extreme values, corresponding to the well-defined face and woman, 
and rarely ranked images to the mid values, corresponding to the trans- 
itional ambiguous images. The input-output relationship, that is, the image 
presented vs. the image answered (perceived by the subject), is shown in 
the top panel of Fig. 9. A linear map (thick lines in top panel of Fig. 9) can 
approximate the subject input-output data, in that this "perceptual map" 
contains two stable states and a unstable one. 

If the subject's perception of the presented images is indeed reduced to 
such a bistable map, it should be possible, with the appropriate paradigm, 
to demonstrate the existence of dynamics similar to noisy modulated 
bistable systems. For this purpose the perception of the images was studied 
iteratively: An initial arbitrary image is selected and presented; the subject 
then ranks this image in the usual manner. The subject's answer is then 
added to a random number (noise of uniform distribution) and/or a 
sinusoidal modulation to determine the next image. This image is then 
presented and ranked by the subject, and so on. The period of the sine 
wave modulation was relative to the 1-Hz sampling rate (rate of image 
presentation and ranking). Noise or signal amplitudes are necessarily 
integers, referred to as image number. Trials lasted up to 30 rain, collecting 
several hundred data points. The statistics of residence times in one of the 
stable states (face or woman) was then analyzed. A typical result (for the 
same subject as in Fig. 9) is presented in Fig. 10A, where the histogram of 
the residence times shows peaks at p/2, 3p/2, and 5p/2, where p is the 
modulation period. 

Figure 10B shows the effects of increasing noise amplitude (for fixed 
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Fig. 9. Ranking of the 17 images with random presentation of the pictures in one subject. 
Top panel shows the input-output relationship (dots are the subject's responses). Superim- 
posed on the responses is a piecewise linear approximation of the input-output relationship 
(the midportion of the map has a slope > 1). Middle panel is the distribution of the images 
presented (nearly uniform). Bottom panel is the distribution of the output image numbers 
indicated by the subject (skewed to the two extreme pictures: face and woman). 
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modulation parameters) in the SNR. This ratio was estimated as the 
number of residence times (in one of the stable states) equal to half of the 
modulation period, relative to the number of events at other time bins. This 
ratio increases with increasing noise, reminiscent of stochastic resonance. 
From the perceptual viewpoint, this result implies a paradoxical improve- 
ment of the subject's awareness of the small periodic modulation with 
increased random presentation of the images. 

5. A D D I T I O N A L  C O M M E N T S  A N D  QUESTIONS 

The numerical simulations in Section 2 using a generic excitable model 
show that direct stimulation of a neuron with a stochastic and periodic 
signal can induce spike trains with the same statistical properties of noisy 
bistable systems. Now, what is the chance that such a scenario of noise and 
periodic signal happens somewhere in the nervous system ? In the periphery 
of the vertebrate nervous system, there is a large diversity of sensory recep- 
tors responsive to different energies. In many sensory pathways, there is a 
dramatic qualitative change in firing properties when we move from the 
peripheral nervous system centrally. Roughly, the system progressively 
becomes much noisier. This is mainly due to a tremendous divergence of 
information, where individual neurons contact many others (synapses onto 
1000-100,000 neurons), and since most synaptic contacts are leaky. 

In fact, the synaptic leakage of neurotransmitter, or spontaneous 
release, mainly studied in the neuromuscular junction (i.e., miniature end- 
plate potentials), generally displays Poisson-distributed release intervals. (5) 
The arrival of a conducted action potential usually triggers a release of 
neurotransmitter that is a very large multiple of this background noisy 
release. Thus, in the case of the neuromuscular synapse, the signal (release 
due to conducted neural activity) is perhaps much larger than the noise 
(spontaneous leakage), excluding a role for stochastic resonance. However, 
this picture is not universal for central synapses. Noise in this case is not 
only restricted to spontaneous release of neurotransmitter(s), but also arises 
from uncorrelated signals arriving from other neurons, as well as small 
local ionic fluctuations such as presynaptic intracellular changes in Ca 
concentration. It is obvious that stochastic resonance in such distributed 
systems is far more complex than the actual low-dimensional picture we 
have at the neuromuscular junction. 

The appreciation of spike trains as stochastic point processes was 
formalized in the early 1960s by Gerstein, Perkel, Segundo, Moore, and 
others.(3, 14, 16, 18) These scientists were among the first to introduce formal 
measures of higher-order statistics of spike trains, raising the possibility 
that these higher moments can be important in information transmission. 
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These investigators also enunciated the advantages of variability in cellular 
responses in information transmission both at the level of spikes and at the 
synapse. (15, ~9, 22) Since then stimulation of neurons or their receptors by 
white noise has been used to characterize the systems' transfer functions, 
linear or nonlinear, in the latter case by computing the Wiener kernels/H) 
More recently, connectionist models for neural information transmission 
have implied an annealing-type role for noise in these networks, implying a 
similar function for spontaneous activity in the central nervous system. (7'23) 
In this context, stochastic resonance provides yet another interpretation of 
background noise, but the utility of the theory remains to be established. 
For this it is necessary to establish that the background noise in the central 
nervous system is controlled and systematically modulated during different 
states of arousal or wakefulness and also that the information transmission 
under these different states is modified and that this modification is 
relevant to perception and behavior. These are lofty goals and in our 
laboratory we have just begun to pursue portions of these objectives. 

The single-unit recordings in the spinal cord and cortex both indicate 
that higher-order neurons share some features of noisy modulated bistable 
systems. However, the presented data also correspond to an increase in 
mean firing rate during vibrotactile stimulation. Neurons responsive to 
vibrotactile stimuli with no change in mean rate have been reported in the 
primary somatosensory cortex in awake behaving monkeys (ref. 8, see their 
Fig. 7). These neurons show changes in their phase locking during stimula- 
tion without increasing their mean rate. Some of these neurons show 
correlative changes in their responses to the attentive state of the animal. 
Using the present theory, it should be possible to determine stimulus 
amplitudes for a given spontaneous activity rate to demonstrate changes in 
unit activity with no mean rate change for most neurons showing 
stochastic resonance. One can then determine whether these stimuli are 
relevant to perception, given their amplitudes and the robustness of the 
neuronal responses. 

The visual perception task provides a new technique for studying the 
dynamics of human perception. The main advantage of the procedure is 
that the volunteers, while performing the task, have no idea as to what the 
point of it is. Their general reaction is to think of it as a video game where 
their responses influence the next image they see, without having a clue as 
to what rules determine the next image. Thus, the sinusoidal wave modula- 
tion superimposed on noise is completely masked and the subjects detect it 
only in a statistical sense. This approach then provides a new strategy that 
can be used in a variety of psychophysical tests. The specific task we report 
is closely related to short-term memory and can be applied to classify 
various short-term memory deficits. Since both the modulation and the sine 
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wave were forced on the subject externally, we cannot estimate the extent 
of the "internal" noise that influenced the subjects behavior. However, we 
have not yet established that this resonance can occur in everyday behavior 
with the noise generated internally by the subject. But minor changes in the 
paradigm should enable us to determine the effects of internal noise on the 
task, which in turn may demonstrate perceptual stochastic resonance. It 
should be emphasized that the data presented take advantage of the per- 
ceptual hysteresis to demonstrate that such perceptions can show stochastic 
resonance. 

The three examples discussed in this paper do show that stochastic 
resonance can be exhibited at several levels of information processing in the 
central nervous system. The supposedly functional use of noise in brain 
function, although very attractive, remains to be established. 
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